Module Handbook


Module Name:

Graph Theory

Module Level:


Abbreviation, if applicable:


Sub-heading, if applicable:


Courses   included   in   the

module, if applicable:



5th / Third Year

Module coordinator(s):

Dr. Mohammad Imam Utoyo, M.Si


Dr. Mohammad Imam Utoyo, M.Si


Bahasa Indonesia

Classification   within   the


Compulsory Course / Elective Studies

Teaching format / class

hours per week during semester:

2 hours lectures (50 min / hour)


2 hours lectures, 2 hour structural activities, 2 hours individual study,

13 week per semester, and total 78 hours per semester   2.6 ECTS

Credit Points:



Discrete Mathematics and Fundamentals of Mathematic II

Learning goals/competencies:

General Competence (Knowledge):

  Capable of applying the concepts of graph theory on related  problems.


Specific Competence:

1.   Determine whether a graph is a planar graph
2. Determine whether a graph is a graph Euler
3. Determine whether a graph is a graph Hamilton
4. Determine the coloring of a graph
5. Determine a graph Chromatic Numbers
6. Determine the matching of a graph
7. Determine the decomposition and factorization of graph
8. Rewrite specific topics on graph


Planar Graphs, Euler Graphs, Hamiltonian Graphs, Coloring graphs, Matching (maximum Matching, perfect Matching), decomposition and factorization of graph, rewrite the specific topic of the graph and presented.

Soft skill Attribute

Active, honesty and discipline

Study/exam achievements:

Students are considered to be competent and pass if at least get 40

of maximum mark of the exams (UTS dan UAS), structured activity

(group discussion).

Final score (NA) is calculated as follow: 10% softskill+20% Quiz + 20% assignment  + 25% UTS + 25% paper and presentation (UAS)



Final index is defined as follow:

A      :    75 - 100

AB    :    70 - 74.99

B      :    65 - 69.99

BC    :    60 - 64.99

C      :    55 - 59.99

D      :    40 - 54.99

E       :      0 - 39.99

Forms of Media:

Slides and LCD projectors, whiteboards

Learning Methods

Lecture, assessments, presentation


1.  Chartrand, G., Oellerman, O.R., 1993, Applied and Algorithmic Graph Theory, McGraw-Hill Inc, Canada.

2. West, Douglas B, 2001, Introduction to Graph Theory, Second Edition, Prentice-Hall, Inc, USA.

3. Harary, F, 1976,  Graph Theory

4. Paper jurnal internasional tentang graf.